<u>a</u>;

08409 = -

FRO

range,

Mrs Hickey Miss Nixon Mrs Underhill Mrs Leslie

PYMBLE LADIES' COLLEGE

YEAR 12

TRIAL HIGHER SCHOOL CERTIFICATE - 1995

3/4 UNIT MATHEMATICS

Time Allowed: 2 Hours

Plus 5 Minutes reading time

DIRECTIONS TO CANDIDATES:

- * Attempt all questions.
- * All questions are of equal value.
- * All necessary working should be shown in every question. Marks may be deducted for careless or badly arranged work.
- * Each question is to be started on a new page and labelled with your name and your teacher's name.
- * Standard integrals are attached.
- * Approved calculators may be used.

Question 1

(a) If $f(x) = x \sin^{-1} x$ evaluate $f'(\frac{\sqrt{3}}{2})$

3

(b) (i) Two dice are tossed and the two numbers are added. State the probability that this total is 10 or greater.

3

- (ii) Two dice are tossed eight times. Find the probability that a total of 10 or greater occurs:
 - (a) at least once
 - (B) exactly once

(give answers correct to 3 significant figures)

(c) (i) Use the factor theorem to factorise $p^3 + 2p + 12$

6

- (ii) $P(2p, p^2)$ is a point on the parabola $x^2 = 4y$
 - show that the equation of the normal at P is $x + py = p^3 + 2p$
 - (B) Find the co-ordinates of P if this normal cuts the x axis at (-12, 0)

Question 2 (Start a new page)

(a) Find $\int \frac{xdx}{1+2x}$ using the substitution u = 1 + 2x

4

(b) (i) Evaluate $\int_{0}^{\frac{\pi}{6}} \sin^{2}\theta \ d\theta$

- 8
- (ii) Use the substitution $x = cos2\theta$ to evaluate $\int_{y_2}^{1} \sqrt{\frac{1-x}{1+x}} dx$

Question 3 (Start a new page)

Marks 5

(a)

ABCD is a rhombus whose diagonals intersect at X. The perpendicular CP from C to AB cuts BD at Y.

Prove that:

- (i) points B, P, X, C are concyclic
- (ii) points A, Y, C, D are concyclic
- (b) (i) Sketch $y = 4 \tan^{-1} x$
 - (ii) By drawing a suitable line, l, on this graph, show that the equation

$$4 \tan^{-1}x + x - 4 = 0$$

has a root close to x = 1. Clearly state the equation of l.

(iii) Use Newton's method once to find a better approximation to this root. (Give your answer correct to 3 decimal places).

7

Question 4 (Start a new page)

(a) A population of bacteria is treated with a new drug. B, the number of bacteria present after t minutes is given by

$$B = 200 + 500 e^{kt}$$

If initially the population decreases at the rate of 10 bacteria/minute

- (i) evaluate k, and
- (ii) find the time it takes for the population to halve.
- (iii) Sketch the graph of B against t.
- (b) A function f(x) is defined as $f(x) = x^3 + 6x^2 + 12x 14$ for $-1 \le x \le 4$
 - (i) Show that f(x) is an increasing function.
 - (ii) Explain why the inverse function $y = f^{-1}(x)$ exists and state its domain and range.
 - (iii) Find the gradient of $y = f^{-1}(x)$ at the point (5, 1) on it.

6

6

Question 5 (Start a new page)

Marks

(a) Given $x (1 + x)^n = \sum_{r=0}^n \binom{n}{r} x^{r+1}$

3

show by differentiation that

$$\binom{n}{o}$$
 + 2 $\binom{n}{1}$ + 3 $\binom{n}{2}$ + ... + $(n + 1)$ $\binom{n}{n}$ = $(n + 2)$ 2^{n-1}

(b) A particle is oscillating in simple harmonic motion on a straight line. Its displacement, x cm, from the origin 0 at time t seconds

9

is given by
$$x = 3 + 2 \cos (\frac{1}{2}t + \frac{\pi}{3})$$

- (i) Find its initial position.
- (ii) State the frequency and the amplitude of the oscillation.
- (iii) Find the first two times that the particle moves through its centre of oscillation.
- (iv) If its velocity at time t seconds is v cm/sec, express v² as a function of x.

Question 6 (Start a new page)

(a) A (t, e^t) and B $(-t, e^{-t})$ are two points on $y = e^x$, (t > 0). The tangents at A and B intersect at an angle of 45° 6

- (i) Show that $e^t e^{-t} = 2$
- (ii) Solve this equation for t
- (b) When x cm from the origin, the acceleration of a particle moving on a straight line is given by

6

$$\frac{d^2x}{dt^2}=\frac{-4}{(x+1)^3}$$

It has an initial velocity of 2 cm/second at x = 0

- (i) If its velocity is V cm/second, show that $V = \frac{2}{x+1}$
- (ii) Find the time taken for the particle to reach x = 4

(a) Solve $\sin \alpha - 3 \cos \alpha = 3$ for $0^{\circ} \le \alpha \le 360^{\circ}$

4

8

(b)

Diagram not to scale

A projectile is fired from a point O with initial speed of V m/s at an angle of elevation $\,\theta\,$. If x and y are the horizontal and vertical displacements of the projectile in metres from O at time t seconds

later then $x = Vt \cos\theta$ and $y = Vt \sin\theta - \frac{1}{2}gt^2$ where g m/s² is the acceleration due to gravity.

The projectile falls to a point P below the level of O such that PM = OM.

- (i) Prove that the time taken to reach P is $2V \frac{(\sin\theta + \cos\theta)}{g}$ seconds
- (ii) Show that the distance OM is

$$\frac{V^2}{g} (\sin 2\theta + \cos 2\theta + 1) metres$$

(iii) If the horizontal range of the projectile level with O (i.e. OS) is r metres and OM = $\frac{4r}{3}$, (r > 0)

Prove that $\sin 2\theta - 3 \cos 2\theta = 3$

- (iv) Hence by using part (a), find the value of θ .
- (v) If the magnitude of the velocity of the projectile at P is KV m/s find the exact value of K

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln(x + \sqrt{x^2 + a^2}), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln(x + \sqrt{x^2 + a^2})$$

NOTE: $\ln x = \log_a x$, x > 0

Bunit 1995 Laboutions

$$\begin{cases}
(x) & f(x) = 2 \cos^{-1} x + \frac{x}{\sqrt{1-x^2}} \\
f'(x) & = 2 \cos^{-1} x + \frac{\sqrt{3}x}{\sqrt{1-3}x} \\
= \frac{\pi}{3} + \sqrt{3}$$

(b) (i) 16

(3)
$$(11)(x) P(ar (east on u) = 1 - (5)^{8}$$

$$= 0.767$$

$$(3) P(exactly on u) = 8C_{1}(\frac{1}{6})(\frac{5}{6})^{7}$$

$$= 0.372$$

(e)()
$$f(p) = p^3 + 2p + 12$$

 $f(-2) = -8 - 4 + 12 = 0$
 $f(-2) = (p+2)$ is a factor
$$f(p) = (p+2) p^2 - 2p + 6$$
(1) $x = 2p$ $y = p^2$

$$\frac{dx}{dp} = 2$$

$$\frac{dy}{dp} = 2$$

$$\frac{dy}{dp} = 2p$$

$$\frac{dy}{dp} = p$$

$$\frac{dy}{dp} = p$$

$$\frac{dy}{dp} = \frac{1}{p}$$

Engineeral:
$$y - p^{2} - \frac{1}{p}(x-2p)$$
 $x + 12y = y^{2} + 2p$
 $(-12,0)$ Les en acumul

 $y - p^{2} - \frac{1}{p^{2}}(x-2p)$
 $x + 12y = y^{2} + 2p$
 $y - p^{3} - \frac{1}{p^{2}}(x-2p)$
 $y - p^{4} - \frac{1}{p^{4}}(x-2p)$
 $y - p^{4} - \frac{1}$

$$\frac{2}{1+2x} = \int \frac{x \, dx}{1+2x}$$

$$= \int \frac{u^{-1}}{4u} \, du \, .$$

$$= \frac{1}{4} \int (1 - \frac{1}{4u}) \, du \, .$$

$$= \frac{1}{4} \int (1 - \frac{1}{4u}) \, du \, .$$

$$= \frac{1}{4} \int (1 + 2x) - \frac{1}{4} \ln (1 + 2x) + C$$

$$= \frac{1}{4} \int \frac{u}{6} \left(1 - \cos 2\theta\right) \, d\theta$$

$$= \frac{1}{4} \int \frac{u}{6} \left(1 - \cos 2\theta\right) \, d\theta$$

$$= \frac{1}{4} \int \frac{u}{6} \left(1 - \cos 2\theta\right) \, d\theta$$

$$= \frac{1}{4} \int \frac{1-2u}{6} \, dx$$

$$= \frac{1}{4} \int \frac{1-2u}{6} \, dx$$

$$= \int \frac{1-2u}{4x} \, dx$$

3 (%) Proof (1) KBXC = 90° (drags of rhimbus du 1) LBPC = 90° (given) pto B,P,X,c are concycle (equal L's en BC v on same sole of (1) AB = AD (sides of nhambus) : LABD=LADB (base L'opisosules A ABD) < PBX = C = PCX (angles in same segment of ancie BPXC) · · LADY= LACY · pb A, Y, C, D are concycle (equal 25 a) Ay I on same side 20 1, 4 4 lan > x + a my my r here l + neale l is line y = 4- x P, point of intersection, his x value cion to

$$f(x) = 4 \frac{1}{4} - 4$$

$$f'(x) = \frac{4}{1+x^{2}} + 1$$

$$f(x) = 4 \frac{1}{4} - 3$$

$$f'(x) = 3$$

$$x = 1 - 3$$

4.a) B = 200 + 500 + 10t 6 t=0 $\frac{dB}{dt}=-10$. dB = 500 ke kt -. - 10 = 500 k $k = -\frac{1}{50}$ m) Inshally B = 700. When B = 350. 350 = 200 + 500 e - 50 $e^{-\frac{t}{50}} = \frac{150}{500}$ t = 60.2 It takes 60.2 minu tzo idin mp to a C

 $f(x) = x^3 + 6x^2 + 12x - 14$, -15x = 4(6) $\int_{0}^{1} (x) = 3x^{2} + 12x + 12$ $= 3(x + 2)^{2}$ Junu (2+2)2 70 fer -16 26 4 l. f'(11) is possible.

i. f(11) is an vacreasing for 1 it is a 1-1 for in mores ong for $\int_{-1}^{-1} (x) \quad D: -21 \le x \le 194$ $(1) \qquad \begin{cases} 1 \\ 1 \end{cases} = 27$ Grad of unverse for at x = 5 is \$ 37

•

5(c)
$$x(1+x)^n = \frac{\pi}{2} \cdot \binom{n}{x} x^{n+1}$$

Differentiate

$$1 \cdot (1+x)^n + nx(1+x)^{n-1} = \binom{n}{0} + x\binom{n}{1} x + 3x^{n+1} + 4\binom{n}{1} x^{n+1}$$

$$1 \cdot (1+x)^n + nx(1+x)^{n-1} = \binom{n}{0} + x\binom{n}{1} + 3x^{n+1} + 4\binom{n}{1} x^{n+1}$$

$$1 \cdot 2^n + n \cdot 2^{n-1} = \binom{n}{0} + x\binom{n}{1} + 3\binom{n}{1} + 4\binom{n}{1} x^{n+1}$$

$$2^n + n \cdot 2^{n-1} = \binom{n}{0} + x\binom{n}{1} + 3\binom{n}{1} + 4\binom{n}{1} x^{n+1}$$

$$1 \cdot 2^n + n \cdot 2^{n-1} = \binom{n}{0} + x\binom{n}{1} + 3\binom{n}{1} + 4\binom{n}{1} x^{n+1}$$

$$1 \cdot 2^n + n \cdot 2^{n-1} = \binom{n}{0} + x\binom{n}{1} + 3\binom{n}{1} + 4\binom{n}{1} x^{n+1}$$

$$1 \cdot 2^n + n \cdot 2^{n-1} = \binom{n}{0} + x\binom{n}{1} + 3\binom{n}{1} + 4\binom{n}{1} x^{n+1}$$

$$1 \cdot 2^n + n \cdot 2^{n-1} = \binom{n}{0} + x\binom{n}{1} + 3\binom{n}{1} + 4\binom{n}{1} x^{n+1}$$

$$1 \cdot 2^n + n \cdot 2^{n-1} = \binom{n}{0} + x\binom{n}{1} + 3\binom{n}{1} + 4\binom{n}{1} x^{n+1}$$

$$1 \cdot 2^n + n \cdot 2^{n-1} = \binom{n}{0} + x\binom{n}{1} + 3\binom{n}{1} + 4\binom{n}{1} x^{n+1}$$

$$1 \cdot 2^n + n \cdot 2^{n-1} = \binom{n}{0} + x\binom{n}{1} + 3\binom{n}{1} + 4\binom{n}{1} x^{n+1}$$

$$1 \cdot 2^n + n \cdot 2^{n-1} = \binom{n}{0} + x\binom{n}{1} + 3\binom{n}{1} + 4\binom{n}{1} x^{n+1}$$

$$1 \cdot 2^n + n \cdot 2^{n-1} = \binom{n}{0} + x\binom{n}{1} + 3\binom{n}{1} + 4\binom{n}{1} x^{n+1}$$

$$1 \cdot 2^n + n \cdot 2^{n-1} = \binom{n}{0} + x\binom{n}{1} + 3\binom{n}{1} + 4\binom{n}{1} x^{n+1}$$

$$1 \cdot 2^n + n \cdot 2^{n-1} = \binom{n}{0} + x\binom{n}{1} + 3\binom{n}{1} + 4\binom{n}{1} x^{n+1}$$

$$1 \cdot 2^n + n \cdot 2^{n-1} = \binom{n}{0} + x\binom{n}{1} + 3\binom{n}{1} + 4\binom{n}{1} x^{n+1}$$

$$2^n + n \cdot 2^{n-1} = \binom{n}{0} + x\binom{n}{1} + 3\binom{n}{1} + 4\binom{n}{1} x^{n+1}$$

$$2^n + n \cdot 2^{n-1} = \binom{n}{0} + x\binom{n}{1} + 3\binom{n}{1} + 4\binom{n}{1} x^{n+1}$$

$$2^n + n \cdot 2^{n-1} = \binom{n}{0} + x\binom{n}{1} + 3\binom{n}{1} + 4\binom{n}{1} x^{n+1}$$

$$2^n + n \cdot 2^{n-1} = \binom{n}{0} + x\binom{n}{1} + 3\binom{n}{1} + 4\binom{n}{1} x^{n+1}$$

$$2^n + n \cdot 2^{n-1} = \binom{n}{0} + x\binom{n}{1} + 3\binom{n}{1} + 4\binom{n}{1} x^{n+1}$$

$$2^n + n \cdot 2^{n-1} + x\binom{n}{1} + 4\binom{n}{1} x^{n+1} + 4\binom{n}{1} x^{n+1}$$

$$2^n + n \cdot 2^{n-1} + x\binom{n}{1} + 4\binom{n}{1} x^{n+1} + 4\binom{n}{1} x^{$$

b (a)
$$y = e^{\lambda}$$

dy

 $dx = e^{\lambda}$

at A, quid = $e^{t} = m$,

at B, grad = $e^{-t} = m$.

$$dan 0 = \frac{m_1 - m_1}{1 + m_1 m_2}$$

$$1 = \frac{e^{t} - e^{-t}}{1 + 1}$$

$$2 = e^{t} - e^{-t}$$

$$4 = e^{t} - e^$$